The 88" Cyclotron

Larry Phair

Nuclear Science Division Lawrence Berkeley National Laboratory

Outline

- Two missions
 - Nuclear Science program (DOE)
 - Support the nation's Nuclear Space Security (NSS) efforts
- Cyclotron specs
- Core capabilities
 - BASE Facility (cocktails)
 - Ion source development
- Cyclotron operation
- Future plans: higher energies

88-Inch Cyclotron Dual Mission

Conduct world class science

Support national security and other US space programs in the area of radiation effects testing

- Element 115 mass measurement: intense beams needed. 1 particle microamp of ⁴⁸Ca for SHE production
- Mass measurement completed (successfully!). Publication went out yesterday (PRL)
- Historically, Cyclotron funded by DOE, NRO, USAF in a 60:20:20 split
- Interagency Agreement (IA): FY2018 and beyond with USAF and NASA

88-inch accelerator

VENUS: 18+28 GHz

AECR: 10+14 GHz

High Intensity Light Ions

Protons to 60 MeV ³He to 170 MeV

Heavy Ions

5 To 32 MeV/nucleon $0.2 \le Q/M \le 0.5$

Mass Resolution

1/3000

"Beam cocktails"

$$\frac{E}{M} = \left(\frac{Q}{M}\right)^2 \times K$$

Medium to very high charge states of every element from H to U

BASE Cocktails

What is a 'cocktail'?

- Multiple ion species are injected into the Cyclotron simultaneously, which are then selected and separated by simply changing the frequency.
- Normally, it would take hours to retune the Cyclotron to a new ion. With our ion sources, we can change ions in less than 3 minutes.

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

$$\begin{split} \frac{e \cdot B_{ECR}}{m_e} &= \omega_{\mu-wave} \\ \omega_{\mu-wave} &= 28GHz \quad B_{ECR} = 1T \end{split}$$

$$\omega_{\mu-wave} = 28GHz$$
 $B_{ECR} = 17$

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

$$\begin{split} \frac{e \cdot B_{ECR}}{m_e} &= \omega_{\mu-wave} \\ \omega_{\mu-wave} &= 28GHz \quad B_{ECR} = 1T \end{split}$$

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

ECR: <u>E</u>lectron <u>C</u>yclotron <u>R</u>esonance

Ion sources at the 88-Inch Cyclotron

ECR 1983

Max B-Field: 0.4T

Frequencies: 6.4GHz

Max Power: 0.6kW

AECR-U 1996

Max B-Field: 1.7T

Frequencies: 10, 14GHz

Max Power: 2.6kW

Ion sources at the 88-Inch Cyclotron

ECR 1983

Max B-Field: 0.4T

Frequencies: 6.4GHz

Max Power: 0.6kW

AECR-U 1996

Max B-Field: 1.7T

Frequencies: 10, 14GHz

Max Power: 2.6kW

VENUS 2004, 2008 for operations

Max B-Field: 4.0T (superconducting)
Frequencies: 18, 28GHz

Max Power: 12kW

Why intense beams are important...

FRIB needs very high intensity high-charge-state beams.

Low emittance beams for high intensity transmission (super heavy studies)

Next generation ECR ion source at "older" facilities could be a path forward for increased heavy ion use

- UC Davis
- TAMU

Collaboration with MSU ²³⁸U³³⁺: 430 µA

The core of MARS: a closed-loop-coil

A closed-loop hexagon coil

The core of MARS: a closed-loop-coil

A closed-loop hexagon coil

The Closed-loop Coil (CIC) generates a minimum-B configuration by itself, except the axial mirrors are not high enough for applications in ECRIS.

The core of MARS: a closed-loop-coil

A closed-loop hexagon coil

The Closed-loop Coil (CIC) generates a minimum-B configuration by itself, except the axial mirrors are not high enough for applications in ECRIS.

Hours run @ 88" Cyclotron

- Beam time is split roughly:
- 60% local science program (BGS+others)
 40% chip testing (BASE Facility)

The 88-Inch Cyclotron: Thoughts and Concerns

- For more than ten years, Cyclotron had been jointly funded by DOE, NRO, USAF in a 60:20:20 split
- In FY16 and FY17, funding came from DOE and AF (only). BASE funding cut in half.
- Low funding meant reduced number of hours in FY16 and FY17. 3500 hours
- For FY18, NASA and USAF together, \$2.2M

Needed: stable funding

The future...

Linac booster: Sami Tantawi, Stanford.

The future...

Linac booster: Sami Tantawi, Stanford.

Core Areas of Research for the Advancement of RF Accelerator Technology

SLAC

Physics of Breakdown

Discovery of Magnetic Field's Role in Breakdown
Triggered New Research Initiative

 Achieved through studies of surface electric and magnetic fields, processing techniques, surface finish

Materials Science

Investigate Materials to Improve the Performance of High Gradient Accelerating Structures

- Enhanced performance with increasing material strength
- Low temperature operation also increases the

Innovative Electrodynamics

Geometry of Accelerating Structures Optimized Accounting for:

- 1. Our New Understanding of the Physics of Breakdown (magnetic fields, materials etc.)

 AND
- 2. The Beam Parameters
 Required for a Specific

Geometry optimizations for accelerator structures based on reduction of the magnetic surface field

Manufacturing Engineering

Manufacturing Techniques that are Compatible with Superior Materials and

- Linique Geametries
 assembly with clamped structures and welding
- Split-block machining for increased flexibility in fabricating advanced structures and reducing

Novel split-block assembly for novel gap accelerator 10

The future...

Summary- Solid Foundation for Extending to Higher Frequency and Gradient

SLAC

- Gradients increased by factor of ~3, from 65 MV/m to > 170 MV/m
- Very high shunt impedance can improve RF to beam efficiency
- New Structure Topologies could go beyond 200 MV/m efficiently:
 - Pave the way for future high energy colliders
 - Revolutionize proton accelerators
 - Provide an economical driver for plasma wakefield accelerators
- New RF source designs improve efficiency and lower voltages:
 - Efficient modulators with short rise and fall times
 - Eliminate pulse compression for much higher system efficiency
 - Klystrons with no electromagnets and cost effective depressed collectors
- High efficiency allows NCRF operation beyond 10 KHz
- Many other applications light sources, medical linacs, ...

Properties of 10 MeV/nucleon cocktail beam

- Beam species typically present in 10 MeV/nucleon cocktail:
 11B³⁺, 18O⁵⁺, 22Ne⁶⁺, 40Ar¹¹⁺, 65Cu¹⁸⁺, 86Kr²⁴⁺, 124Xe³⁴⁺, 197<u>Au⁵²⁺</u>
- Acceleration of different beam species requires shifting cyclotron frequency:
 - Frequency range for cocktail: 6.79 to 7.17 MHz
 - Velocity range for cocktail: β =0.145±3%
- Extract 0.03-10 enA from cyclotron (0.4-800 particles per bunch). Users often attenuate to $\sim 10^5$ particles per second, or about one particle every 70 bunches
- Cyclotron beam pulse length: ~5 ns. Using ~10⁵ bunches of this length each second means the "beam there" duty factor is in the range of 0.05%

What we are looking for in a post-accelerator

We'd like a post-accelerator that can demonstrate:

- increase the energy of 10 MeV/nucleon beams to at least 25 MeV/nucleon (equivalent of 55 MV acceleration voltage)
- accept the 10 MeV/nucleon beam's velocity range ($v_0 \pm 3\%$)
- accelerate ~ 10⁵ particles every second roughly evenly spaced in time
- have an overall length measured in the low tens of meters

Linac booster solution that scales. Next milestones:

- De-lidding solution (as in "no"), 100 MeV/nucleon
- Test as you fly, 250 MeV/nucleon

White paper this summer

Summary

- The 88" Cyclotron successfully supports both a super-heavy element program and an applied program (BASE).
- Stable funding needed for successful operation
- MARS ECR ion source is at the forefront of ECR ion source development and would provide an upgrade path for the radiation effects testing community
- An energy upgrade path for the 88-Inch Cyclotron (linac booster) may be feasible.

